1,284 research outputs found

    A Superheated Droplet Detector for Dark Matter Search

    Get PDF
    We discuss the operation principle of a detector based on superheated droplets of Freon-12 and its feasibility for the search of weakly interacting cold dark matter particles. In particular we are interested in a neutralino search experiment in the mass range from 10 to 10^4 GeV/c^2 and with a sensitivity of better than 10^-2 events/kg/d. We show that our new proposed detector can be operated at ambient pressure and room temperature in a mode where it is exclusively sensitive to nuclear recoils like those following neutralino interactions, which allows a powerful background discrimination. An additional advantage of this technique is due to the fact that the detection material, Freon-12, is cheap and readily available in large quantities. Moreover we were able to show that piezoelectric transducers allow efficient event localization in large volumes.Comment: 15 pages LATEX; 11 figures on request from [email protected] submitted to Nuclear Instruments and Methods

    Low Energy Neutrino Physics after SNO and KamLAND

    Full text link
    In the recent years important discoveries in the field of low energy neutrino physics (Eν_\nu in the \approx MeV range) have been achieved. Results of the solar neutrino experiment SNO show clearly flavor transitions from νe\nu_e to νμ,τ\nu_{\mu,\tau}. In addition, the long standing solar neutrino problem is basically solved. With KamLAND, an experiment measuring neutrinos emitted from nuclear reactors at large distances, evidence for neutrino oscillations has been found. The values for the oscillation parameters, amplitude and phase, have been restricted. In this paper the potential of future projects in low energy neutrino physics is discussed. This encompasses future solar and reactor experiments as well as the direct search for neutrino masses. Finally the potential of a large liquid scintillator detector in an underground laboratory for supernova neutrino detection, solar neutrino detection, and the search for proton decay pK+νp \to K^+ \nu is discussed.Comment: Invited brief review, World Scientific Publishing Compan

    Status of the PICASSO Project

    Full text link
    The Picasso project is a dark matter search experiment based on the superheated droplet technique. Preliminary runs performed at the Picasso Lab in Montreal have showed the suitability of this detection technique to the search for weakly interacting cold dark matter particles. In July 2002, a new phase of the project started. A batch of six 1-liter detectors with an active mass of approximately 40g was installed in a gallery of the SNO observatory in Sudbury, Ontario, Canada at a depth of 6,800 feet (2,070m). We give a status report on the new experimental setup, data analysis, and preliminary limits on spin-dependent neutralino interaction cross section.Comment: 3 pages, 2 figures. To appear in the Proceedings of the TAUP 2003 conference, 5-9 September, 2003, University of Washington, Seattle, US

    Formation of convective cells in the scrape-off layer of the CASTOR tokamak

    Get PDF
    Understanding of the scrape-off layer (SOL) physics in tokamaks requires diagnostics with sufficient temporal and spatial resolution. This contribution describes results of experiments performed in the SOL of the CASTOR tokamak (R=40 cm, a = 6 cm) by means of a ring of 124 Langmuir probes surrounding the whole poloidal cross section. The individual probes measure either the ion saturation current of the floating potential with the spatial resolution up to 3 mm. Experiments are performed in a particular magnetic configuration, characterized by a long parallel connection length in the SOL, L_par ~q2piR. We report on measurements in discharges, where the edge electric field is modified by inserting a biased electrode into the edge plasma. In particular, a complex picture is observed, if the biased electrode is located inside the SOL. The poloidal distribution of the floating potential appears to be strongly non-uniform at biasing. The peaks of potential are observed at particular poloidal angles. This is interpreted as formation of a biased flux tube, which emanates from the electrode along the magnetic field lines and snakes q times around the torus. The resulting electric field in the SOL is 2-dimensional, having the radial as well as the poloidal component. It is demonstrated that the poloidal electric field E_pol convects the edge plasma radially due to the E_pol x B_T drift either inward or outward depending on its sign. The convective particle flux is by two orders of magnitude larger than the fluctuation-induced one and consequently dominates.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004, Nice (France

    Experimental Constraints on the Neutrino Oscillations and a Simple Model of Three Flavour Mixing

    Full text link
    A simple model of the neutrino mixing is considered, which contains only one right-handed neutrino field, coupled via the mass term to the three usual left-handed fields. This is a simplest model that allows for three-flavour neutrino oscillations. The existing experimental limits on the neutrino oscillations are used to obtain constraints on the two free mixing parameters of the model. A specific sum rule relating the oscillation probabilities of different flavours is derived.Comment: 10 pages, 3 figures in post script, Latex, IFT 2/9
    corecore